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Abstract

The transfer matrix method for generating lattice conformations of proteins is explained and applied to lattice proteins having high-level

cooperativity to represent hydrophobic interactions. The main advantage of the method is the extremely efficient attrition-free generation and

enumeration of compact conformations. We review the application of the method for the generation and complete, exact enumeration of all

conformation for linear and cyclic chains in 2D on the square lattice and in 3D on the cubic lattice. We show for compact conformations that

the growth of the chain in a piecewise way, cross-section by cross-section, is much more efficient than the traditional linear chain growth. We

discuss an extension of the method by including information about the amino acid sequence. We develop a Zimm–Bragg [J Chem Phys 31

(1959) 476–85]-like theory of hydrophobic cluster formation by using the transfer matrix method. We show that the transfer matrix approach

to the generation and averaging over chain conformations can be formulated as an algebraic problem. We show also how the transfer matrix

method can be extended to off-lattice proteins.

q 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Understanding protein folding is extremely important for

scientific progress in biology, but it is a problem of high

complexity to find the structure that corresponds to the

global minimum in energy. Globular proteins have dense,

compact cores composed of mostly hydrophobic residues,

hence compact self-avoiding walks on lattices represent the

simplest model capturing basic features of globular proteins

[2–18]. A compact self-avoiding walk is defined as a walk

such that all sites within the protein’s shape have been

visited once and only once, voids (unvisited sites) are not

allowed. In mathematics, such walks are called Hamiltonian

paths, or in the case when the starting and the ending points

of the walk coincide to form closed loops: Hamiltonian

cycles. The imposition of a lattice greatly simplifies the

problem of the generation of protein conformations,

enabling (at least theoretically) the generation and enumer-

ation of all possible compact conformations within a given

volume. Unfortunately, the computer time required for

computations grows geometrically with the length of the

chain, imposing practical limitations on the length of the

protein chain for which the complete enumerations are

possible. Because of these limitations usually, instead of

a complete enumeration of the conformational space, a

random sampling of the space is performed. This is a

process which is inconsistent with the requirements, since

the protein native conformation is unique and any random

search method would typically fail to locate the native

structure. Therefore complete enumerations, whenever

feasible for protein folding, are to be strongly preferred.

One major problem encountered in the generation of

compact conformations in a standard way by growing the

chain linearly is attrition. Attrition is the result of the

excluded volume in a dense system—the site visited once by

the self-avoiding walk cannot be visited again. Because of

this, during the linear generation of the chain (walk) we

encounter growing numbers of dead ends, after which

further generation of the chain is impossible (but there

remain unoccupied sites)-it becomes necessary to back off

one or more steps and try other possibilities to complete the

walk. The attrition grows geometrically with the length of

the chain and becomes a major obstacle in generation of
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compact conformations. Likewise attrition becomes a

problem when unoccupied sites become inaccessible.

These problems of attrition can be avoided completely by

a novel method of generation of compact self-avoiding

walks. This method is based on the algebraic transfer matrix

formalism. The main idea of this method is a different

approach to the chain connectivity in compact confor-

mations. Instead of the traditional linear growth of the chain

(that leads to the attrition) the chain is grown in a piecewise

way, cross-section by cross-section, until the Hamiltonian

path (or Hamiltonian cycle) is completed.

2. The transfer matrix method

The transfer matrix method was first applied to

phenomenological renormalization of the self-avoiding

walk on the square lattice [19,20]. The method was used

later by Schmaltz, Hite and Klein for enumerations of

Hamiltonian circuits in 2D on the square and honeycomb

lattices [21]. Kloczkowski and Jernigan have extended this

method to Hamiltonian circuits in 3D on the cubic lattice,

and to Hamiltonian paths (chains) both in 2D on the square

lattice and in 3D on the cubic lattice [22–25].

Because chains with no ends (circuits) are simpler to

treat, we first explain briefly the idea of the transfer matrix

method for enumerations of Hamiltonian circuits in 2D

upon rectangles with the square lattice. The Hamiltonian

circuit (Fig. 1a) is defined as a walk through all available

lattice points, subject to the conditions that each site can be

visited only once, and that we return in the last step back to

the starting point. The regular Hamiltonian path (Fig. 1b)

does not need to satisfy the second condition, and the walk

(chain) has two ends.

The main simplifying idea in this method is to take

individually each column of sites on the square lattice and

define the connectivities (on one side) of these sites as

‘states’. With such a definition of a ‘state’ there are

relatively few allowed ‘transitions’ from a given state to the

states of the neighboring column. To illustrate this method,

let us consider the enumeration of Hamiltonian circuits on a

square lattice constrained to the m £ n rectangular strip of

width m ¼ 4 and variable length n: Fig. 2a shows all

possible external connectivities to one side of the 4 points

on a line. Fig. 2b shows all possible distributions of bonds

between the 4 points on a line, including the case with no

bonds (#1 where all bonds would be to the neighboring

lines). We note that intersecting connectivities such as #9 in

Fig. 2a are not allowed. Additionally, connectivities #4 and

#5 in Fig. 2a are not allowed due to the parity reasons, so the

total number of the possible connectivity states is only six in

this simple example.

The transfer matrix T is constructed by combining all

connectivity states (Fig. 2a) with all bond distributions (Fig.

2b) and finding the resulting connectivity states formed by

their combinations. The combinations, which lead to

unoccupied sites, triple connections, or to the formation of

small loops, are not allowed. To better understand this

approach, consider the Hamiltonian circuit illustrated in Fig.

1a. The first connectivity state (on the left, #6 in Fig. 2a) is

obtained by making the first vertical cross-section, shown in

Fig. 1a as a dashed line. The next connectivity state (#8 in

Fig. 2a) corresponds to the second vertical cross-section

(dashed line) and is obtained by superimposing the previous

connectivity state on the bond distribution (#3 in Fig. 2b) in

the second column of sites in Fig. 2a. The element Tij of the

transfer matrix is zero if there is no possible transition from

connectivity state i to state j: If there are possible transitions

from state i to state j; then Tij indicates the number of

different ways to realize this transition. (For Hamiltonian

circuits on the square lattice the elements Tij of the matrix T

are either 0 or 1, but generally Tij can be larger than 1.) We

Fig. 1. Hamiltonian circuit (a) and Hamiltonian path (b) on the square 4 £ 7

lattice. Cross-sections defining the first two connectivity states from the left

for the Hamiltonian circuit are shown.

Fig. 2. All possible connectivity states (a) and bond distributions (b) for

generation of Hamiltonian circuits within the rectangles of size 4 £ n:
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construct the vector u of the starting states with elements ui;

for each connectivity state i (such as in Fig. 2a) as the first

state on the left in the process of building a circuit (we use a

left to right convention). The number ui identifies the

number of different ways in which this may be realized. As

starting states, we use the distributions of bonds (such as in

Fig. 2b) that do not contain any unoccupied sites (#7 and 8

in Fig. 2b). We then determine the connectivity state to

which the given distribution of vertical bonds transforms if:

(1) the horizontal bonds connecting to vertical bonds in the

neighboring column on the right side are added, and (2) a

vertical cross-section (the first dashed line in Fig. 1a) is

taken. (The distribution of bonds #7 in Fig. 2b leads to the

connectivity state #7 in Fig. 2a, while the distribution #8

leads to the connectivity state #6.) We also construct the

vector v of the ending states with elements vi; determining

whether a given connectivity state i may form a closed

circuit by combining it with the distribution of vertical

bonds. The exact counting of the number Nc of all possible

Hamiltonian circuits on the rectangle of size m £ n on the

square lattice is then given by the simple formula

Nc ¼ uTðTÞn22v ð1Þ

with the superscript T denoting the transpose of vector u:

For the purpose of this example, if we omit the impossible

states 4, 5 and 9 in Fig. 2a and renumber the remaining

states from 1 to 6 then the transfer matrix T; the vectors of

the starting states u and the ending states v are:

T ¼

0 0 0 1 1 0

0 0 0 1 0 0

0 0 0 1 1 0

1 1 1 0 0 1

0 0 0 1 1 0

1 0 1 0 0 1

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

; u ¼

0

0

0

1

1

0

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

; v ¼

0

0

0

1

0

1

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

ð2Þ

We have extended the method to Hamiltonian chains with

two ends (Hamiltonian paths) in 2D on the square lattice by

generalizing the definition of the connectivity state to

include the connectivities with up to two ends, and by

generalizing bond distributions by including up to two ends

[25]. Fig. 3 shows all possible connectivity states for the

generation of Hamiltonian paths on the rectangle of size

3£ n on the square lattice, and Fig. 4 shows all possible

distributions of bonds.

The vector of starting states u for this case is given by

Eq. (3a) and the vector of ending states v is given by Eq. 3b.

For example, the connectivity state 11 has value 2 as the

starting state in Eq. (3a) because it can be formed both from

and in the first column of the rectangle.

1

2

3

4

5

6

7

8

9

10

11

12

0

1

0

1

0

1

1

0

1

1

2

1

2
6666666666666666666666666666666664

3
7777777777777777777777777777777775

ð3aÞ

Similarly the connectivity state 2 has value 2 as the

ending state because two different distributions of bonds

lead to the formation of the Hamiltonian chain (path),

namely:

The transfer matrix is built in a similar way as for

Hamiltonian circuits by superimposing the connectivity

state upon the bond distribution and finding out what will be

the connectivity state in the next column (cross-section)

resulting from this superimposition. The superimpositions

leading to non-physical cases such as: (1) unoccupied sites,

(2) triple connections, (3) double connection of chain ends,

(4) formation of loops, (5) creation of more than two ends,

and finally (6) to chain disintegration, or breaking into

separate pieces, are not allowed. The transfer matrix for the

Fig. 3. Connectivity states for generation of Hamiltonian paths within the rectangles of size 3 £ n:
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1

2

1

1

2

1

1

0

1

0

1

0

2
6666666666666666666666666666666664

3
7777777777777777777777777777777775

ð3bÞ
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case of 3 £ n square lattice is given below:

T ¼

0 1 0 1 0 0 1 0 1 0 1 1

1 0 1 0 1 0 1 2 1 1 0 1

0 1 0 0 0 1 1 0 1 1 1 0

0 0 0 1 0 0 1 0 0 0 1 1

0 0 0 0 1 0 1 0 1 1 0 1

0 0 0 0 0 1 0 0 1 1 1 0

0 0 0 0 0 1 0 0 1 1 1 1

0 0 0 0 0 0 0 0 0 0 2 0

0 0 0 1 0 0 1 0 0 1 1 1

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1 0 1

0 0 0 0 0 0 0 0 0 0 1 0

2
6666666666666666666666666666666664

3
7777777777777777777777777777777775

ð4Þ

For example T12 ¼ 1 because there is a unique combination

of the connectivity state 1 with bond distributions leading to

the connectivity state 2:

On the other hand T28 ¼ 2 because there are two different

bond distributions that can combine with the state 2 leading

to the connectivity state 8, namely:

Once (for a given cross-section, in this example m ¼ 3)

the transfer matrix is calculated the number of Hamiltonian

paths for any length n of the rectangle is calculated from

Eq. (1).

We have also generalized the transfer matrix method to

3D on the cubic lattice both for Hamiltonian circuits and

Hamiltonian paths [24]. In 3D, we consider Hamiltonian

circuits and Hamiltonian paths on the parallelepipeds of size

l £ m £ n:

Fig. 5 shows examples of a Hamiltonian circuit and a

Hamiltonian path. In this case, both the connectivity states

and bond distributions are defined for the planar cross-

section 2 £ 2. As an example let us consider the possible

connectivity states and bond distributions for Hamiltonian

circuits. Fig. 6 shows all possible connectivity states for the

generation of Hamiltonian circuits on 2 £ 2 £ n cubic

lattice.

It should be noted that connectivity states 7, 8 and 9 in

Fig. 6 are unphysical and the number of possible

connectivity states is reduced to 6. Fig. 7 shows all possible

distributions of bonds within the 2 £ 2 cross-sections.

The transfer matrix is again created by superimposing

connectivity states upon bond distributions and finding out

the connectivity states in the next cross-section. For

example the superimposition of the connectivity state #3

in Fig. 6 and the bond distribution #6 in Fig. 7 leads to the

connectivity state # 2 in the next cross-section. Similarly as

in two-dimensional superimpositions leading to unoccupied

sites, triple connections or the formations of small loops are

not allowed. Once (for a given cross-section l £ m) the

transfer matrix is obtained the enumeration of Hamiltonian

circuits is reduced to matrix multiplication (Eq. (1)).

Similarly, as in 2D the transfer matrix method is

generalized for Hamiltonian paths in 3D by considering

up to two ends in the definition of connectivity states and

bond distributions. The transfer matrix is formed by the

superimpositions of connectivity states and bond distri-

butions subject to similar rules as for two dimension

(unoccupied sites, triple connections, double connection of

chain ends, formation of loops, creation of more than two

ends and chain disintegration are not allowed).

We have written computer programs that automatically

calculate the transfer matrices for paths and circuits in 2D

and 3D. The only limitation is the computer memory

associated with the size of the transfer matrix. The size of

the transfer matrix equals to the number of all possible

combinations of connectivities (including the connectivity

to chain ends for Hamiltonian paths) within the cross-

section and therefore grows with the size of the cross-

section. Additionally, in 3D, the number of connectivity

states grows much faster than in 2D, because in 3D the

requirement that connectivities cannot intersect (such as

state #9 in Fig. 2a) does not hold anymore. (The state #9 in

Fig. 6 is an exception due to the small size of the cross-

section.)

The complete enumerations of Hamiltonian circuits and

Hamiltonian paths in 2D on the square lattice and in 3D on

the cubic lattice were published previously [24,25]. For

example, the number of Hamiltonian paths (chains with

ends) within the 8 £ 12 rectangle on the square lattice is

144,397,808,917,246 and the number of Hamiltonian

circuits (no ends) within the 3 £ 3 £ 8 parallelepiped on

the cubic lattice is 468,855,089,493,448. The computer

program was used to calculate transfer matrices as large as

3104 £ 3104. Now, because of significant increases in

computer memory, and if sparse matrix efficiencies were

utilized, these calculations could be extended to signifi-

cantly larger matrices [26].

3. Extension of the method by adding potentials

The transfer matrix method of generating and enumerat-

ing compact conformations is extremely efficient. The main

advantage is that the piecewise generation of conformations

is attrition-free. Once the transfer matrix for a given cross-

section is defined, the more complicated geometrical

problem of conformation generation (or calculation of

averages such as average energy) becomes a simple problem

of matrix algebra that can be easily performed even for

A. Kloczkowski et al. / Polymer 45 (2004) 707–716710



extremely long rectangles (parallelepipeds). The main

difficulty of this method lies in the rapidly growing number

of connectivity states for the increasing size of the cross-

section, but the development of the transition matrices has

been automated in order to access larger structures. Because

calculations of transfer matrices are generated with a

computer program, we are only limited by the storage

requirements of large matrices. The conversion into algebra

of the highly complex compact self-avoiding walk problem

is the origin of the beauty and power of this method. The

method has only been used to generate and enumerate

compact lattice conformations. However, the protein

folding problem is a combination of two problems: the

problem of generating all possible conformations (struc-

tures), and the problem of imposing the sequence of amino-

acids on the structure and evaluating structures to identify

low energy forms when the inter-residue potentials are

defined. We discuss next, possible future modifications of

the method to deal with more complicated problems

involving energy calculations, irregularities (including

cavities - needed because protein packing is not perfect)

in the protein structure and off-lattice applications of the

method. However the study of protein folding includes, in

addition to the counting and enumerations of all possible

conformations (structures), also how to include effects from

the sequence of amino acids, calculation of the total energy

of the structure and the probabilities of the possible states of

the protein.

In the future the transfer matrix method may find a

possible application for finding the structures having the

lowest energy. We may extend the transfer matrix method

by considering the simplest hydrophobic–polar (HP) model

of lattice proteins. The HP lattice model has been studied

extensively. These studies led to the discovery of many

interesting properties of proteins folds. One particularly

important discovery was the concept of designability of

protein structures as developed by Li, Tang and Wingreen

[27–33]. It has been proven that some protein structures are

highly designable, i.e. a large number of different sequences

of HP residues have the lowest energy associated with the

same structure. This explains, in principle, why so many

different and diverse protein sequences have similar folds.

We may extend the transfer matrix method by using the

two-letter (hydrophobic–polar) labeling of residues. We

may use two approaches: in the first, simplest case, the

hydrophobic residues are only allowed inside the core of the

lattice protein; in the second case, all possible combinations

of H and P residues would be permitted within the cross-

section are allowed.

The introduction of actual H and P labeling of lattice sites

rather than bonds in the sequence corresponds to consider-

ing a distribution over different possible distributions of

bonds or sequences. This is because we generalize the

definition of the distribution of bonds by adding ‘colors’

associated with the types of the residues, but at lattice sites,

not in the sequence.

By using the case of Hamiltonian circuits placed within

the rectangle of size 4 £ n; when hydrophobic residues are

only allowed inside the core, the number of possible

distributions of bonds is only 10. (This is because we have 8

distribution of bonds shown in Fig. 2b where for four points

on the line the ending two points 1 and 4 are given the color

‘P’ and the two points 2 and 3 in the center are given the

color ‘H’, and we have two distributions of bond patterns

[#7 and #8 in Fig. 2b] for ends of the rectangle where color P

is assigned to all four points on the line. We need these latter

two distributions of bonds for the start and termination of

the Hamiltonian space.) In the second model, when H and P

colors can be distributed within the cross-section without

Fig. 5. Hamiltonian path (a) and Hamiltonian circuit (b) for 2 £ 2 £ 3 cubic

lattice.

Fig. 4. Bond distributions for generation of Hamiltonian paths within the rectangles of size 3 £ n: Small circles indicate chain ends.
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restriction, the number of possible bond distributions is 128,

because for each of the 8 distributions of bonds in Fig. 2b

there are 24 possibilities of assigning H and P colors.

To illustrate this method let us consider the Zimm–

Bragg [1,34] type of the model of proteins using the transfer

matrix combined with HP potentials. For simplicity we will

consider Hamiltonian circuits (no ends) on the square lattice

within rectangles of size 4 £ n: (Here the numerical

calculation were performed for the length of the rectangle

n ¼ 10; by example.) It is assumed that all 2 £ ðn 2 2Þ

residues inside the rectangle are hydrophobic, while all

2n þ 4 residues on the ‘surface’ of the rectangle are polar.

The transfer matrix method enables the generation of all

conformations within the rectangle of size 4 £ n: To keep

track of all the nearest neighbor interactions between the

neighboring columns in the rectangle it is useful to define

fragments (tiles) of size 4 £ 2 consisting of two columns.

Generation of Hamiltonian circuits imposes certain rules for

fragment candidates. First, every node on the lattice should

be connected with exactly two other nodes. Additionally,

the connections of the nodes cannot lead to the disinte-

gration of the chain (smaller circuits), and the chessboard-

like parity of the square lattice eliminates some possibilities

for fragments. To achieve this aim, three types of fragments

are defined: starting, middle, and ending fragments. Note

that because of the symmetry the ending fragments will be

mirror images of starting fragments. The number of starting,

middle, and ending fragments are 6, 36, and 6, respectively.

Fig. 8 shows all six possible starting fragments for the

generation of these Hamiltonian circuits.

A Hamiltonian circuit is created when a starting fragment

is followed by middle fragments (or directly by an ending

fragment), which can be used to increase the size of

Hamiltonian circuits, and the circuit is finished when an

ending fragment is matched with a preceding middle

fragment. Assembling the fragments to create a circuit

requires fitting the second column of a given fragment with

the first column of a matching fragment according to a

connection table (transfer matrix) created for specifying

possible matches between fragments. The first two columns

of the Hamiltonian circuit are determined by a starting tile,

and every matching middle or ending fragment (tile) adds

one more column to the forming circuit. After identifying

each possible fragment, statistical weights are assigned

depending on the nature of non-bonded interactions a

fragment adds. In our lattice model, the outside nodes are

defined as polar, and the inside (core) nodes are defined as

hydrophobic. Three distinct non-bonded interactions are

defined depending on the types of nodes that are involved in

the interaction: hydrophobic, polar, and mixed with contact,

non-bonded energies EHH; EPP; and EHP; respectively. The

statistical weights for each interaction are defined as h; p;

and m; in Eq. (5)

h ¼ e2EHH=RT
; p ¼ e2EPP=RT

; m ¼ e2EHP=RT ð5Þ

In our calculations we have set the EPP to zero to define the

energy scale reference point so that p ¼ 1:

Following this methodology, the non-bonded inter-

actions are counted for each fragment and a statistical

weight is assigned. For example, if two hydrophobic and

one mixed non-bonded interactions are formed in any given

fragment, then the statistical weight of this added fragment

will be h2m: If three hydrophobic non-bonded interactions

are formed in a fragment, than an additional statistical

weight, s; is assigned and the resulting statistical weight

becomes sh3: This extra weight represents a cooperativity

cost for the formation of three clustered hydrophobic

interactions inside the protein core.

Since the circuit generation involves a starting fragment,

middle fragment(s), and an ending fragment, the statistical

weights are defined according to the non-bonded inter-

actions created at each step. As a result, the calculation of

statistical weights differs for starting and other types of

fragments. For a starting fragment, the calculation of non-

bonded interactions consists of searching two columns of

nodes in both horizontal and vertical directions. In contrast,

for all middle and ending fragments, the non-bonded

interactions along the vertical direction in the first columns

are not taken into account in order to avoid double counting.

The exception to this, is the first starting tiles, where these

interactions must be included. For example the statistical

weight for the 6 starting tiles in Fig. 8 are phm2; pm2 m4; m3;

m2h; and m3; respectively. Since the total number 36 of

possible fragments (tiles) is too large for presentation, Fig. 9

Fig. 6. All possible connectivity states for generation of Hamiltonian circuits within the parallelepipeds of size 2 £ 2 £ n:

Fig. 7. All possible distributions of bonds for generation of Hamiltonian

circuits within the parallelepipeds of size 2 £ 2 £ n:

Fig. 8. Starting fragments for generation of Hamiltonian circuits within the

rectangles of size 4 £ n:
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show only representative fragments for each of the possible

statistical weights. The frequencies listed in Fig. 9 are the

counts of conformations of different fragments having the

same statistical weight.

The statistical weights for each fragment are stored in

three matrices created according to the transfer matrix

(connection table) rules: S6£36; M36£36; and E36£6 for

starting, middle, and ending states.

By an analogy with the Zimm–Bragg [1] theory we can

define the partition function for all Hamiltonian paths given

by the matrix multiplication. For example the partition

function Z for Hamiltonian paths placed on a 6 £ 4 lattice is:

Z ¼ eTSM1M2M3Ee ð6Þ

where e is the vector of 1’s and T denotes the transpose.

It is possible to calculate the statistical averages of non-

bonded pair types using the well-known results of Zimm–

Bragg theory [1]. For example, the mean number of

hydrophobic non-bonded interactions can be calculated

using

kNhl ¼
›ðln ZÞ

›ðln ZÞ
¼

›ðZÞ

Z›ðln hÞ
ð7Þ

Jernigan in 1966 [34,35] proposed a method for handling

this equation through the decomposition of Z and the direct

matrix product involving only one derivative

›ðZÞ

›ðln hÞ
¼

XN24

m¼0

eTSMmM0MN2m24Ee ð8Þ

where e is the vector of 1’s and

M0 ¼
›M

›ðln hÞ
ð9Þ

Figs. 10 and 11 show the results of calculations for a

rectangle of length n ¼ 10; with p ¼ 1 for varying m (with

s ¼ 10210 in Fig. 10) and for various s values (with m ¼ 60

in Fig. 11). Both figures show characteristic sigmoidal

shapes similar to the Zimm–Bragg helix–coil transition

[1,34]. The average value kNhl (calculated with the use of

statistical weights) is a measure of the extent of hydrophobic

interactions. Fig. 10 show that this hydrophobic affinity is

increasing for smaller values of m: (For m close to one the

curves are similar to a step function). The extra coopera-

tivity of the HH non-bonded contacts afforded by the

statistical weight s leads to sharp increase in the hydro-

phobic affinity and the step-function-like shape of the plots

in Fig. 11 for small s: It is interesting that the one-

dimensional helix–coil theory has helix formation values of

s typically near 1024, and here in 2D we find values leading

to sharp transitions to be near s2 (although these are not

really comparable in any specific ways).

The calculations in Figs.10 and 11 were performed for

quite arbitrary values of parameters h; m; and s: It is worth

mentioning that the sigmoidal character of the plots is nearly

universal and does not occur only for a few unique sets of

values of these parameters. However, some choices of these

parameters lead to a characteristically different behavior

manifested of the plots. Fig. 12 shows the results (kNhl as a

function of s) obtained for two frequently used sets of values

for the energies of hydrophobic–polar interactions. The

dashed line in Fig. 12 corresponds to the simplest HP model.

In this case the plot of kNhl as a function of s is almost a

straight line. The solid line in Fig.12 corresponds to the

values of energies of HH, HP and PP interactions the same

as in the paper by Li, Helling, Tang and Wingreen [33]. The

plot in this case has the sigmoidal character.

We should note that results shown in Figs. 10–12 were

obtained by averaging over all possible conformations

(those completely enumerated by the original transfer

matrix method). The present method is an extension of the

transfer matrix method, that includes the complete enumer-

ation of conformations, calculates the partition function

associated with non-bonded interactions in conformations

of lattice proteins.

Similar sigmoidal curves (not shown here because of the

space limit) we obtain by plotting kNml as a function of m:

Calculations performed for different sizes of the 4 £ n

rectangle show similar sigmoidal Zimm–Bragg helix–coil-

like cooperative transitions. The numerical calculations are

Fig. 9. All possible statistical weights of middle fragments with

representative fragments corresponding to the given statistical weight. To

save the space the fragments have been rotated by 908 clockwise. The

interactions in the upper row (corresponding to the left column before the

908 rotation) are not counted in the calculation of the statistical weights,

because these were included in the previous stage.
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extremely fast and take only about 10 s on a desktop PC.

By contrast, for the same rectangle size 4 £ 10 the

calculations based on traditional method of generation of

all conformations take few minutes on a PC. However,

because the computer time required for the traditional

method grows geometrically with the size of the chains,

for longer chains the transfer matrix approach shows

enormous computational advantages over conventional

methods. The calculations can be also performed for

chains with ends (Hamiltonian paths) in 2D and for

Hamiltonian paths and Hamiltonian circuits in 3D. We

plan to study this problem in the near future. One

principal problem with lattice proteins in 3D is that the

hydrophobic cores of these model proteins are too small

when the total number of points is small. For example in

the case of the cube 3 £ 3 £ 3 the hydrophobic core

consists of a single residue. Another difficulty in 3D is the

significant increase of the size of the transfer matrix.

4. Discussion

The main advantage of the transfer matrix method is that,

by generating the conformations, cross-section by cross-

section, all energies are instantly calculated; the energy is

only associated with the nearest neighbor interactions, i.e.

only the contacts inside the distribution of points on the line

and the contacts with the next cross-section (given by the

transfer matrix method) contribute to the total energy of the

protein. Since we are looking for a structure with the lowest

energy, we may reduce the space of all sequence-

conformation combinations by storing only data corre-

sponding to the set of lower energies, and we may discard

unnecessary high-energy cases. Because the whole problem

of protein folding is reduced to matrix algebra, the transfer

matrix method has significant advantages over the tra-

ditional method of growing the chains and calculating their

energies. One particular problem worth further study is the

Fig. 10. The statistical average kNhl as a function of h for several different values of EHP (in units RT).

Fig. 11. The statistical average kNhl; as a function of h for several different values of s:
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possibility of defining the ‘designability’ of structures

within the matrix formalism.

Another possibility is the redesign the transfer matrix

method by using the formalism of direct products of

matrices (developed by Jernigan and Flory for polymer

chains) [36]. This could be done by defining new

‘combined-states’ by combining connectivity states with

distributions of bonds and also with residue type variations.

This new definition could be especially important for

Hamiltonian paths in 2D and for both paths and circuits in

3D, because some of the elements of the transfer matrix

method in the present form are integers larger than one

(degenerate), since several different distributions of bonds

superimposed on a given connectivity state lead to the same

connectivity state in the next cross-section. The introduction

of ‘combined-states’ will eliminate the degeneracy, which is

important for energy calculations. The use of that formalism

of direct products of matrices would allow us to apply many

known methods from polymer computations to the lattice

protein folding problem.

The inclusion of ‘vacancies’: unoccupied sites within the

protein structure and irregularities [37–42] of the protein

surface is another possible extension of the method.

Unfortunately this increases the number of possible

connectivity states in the method, so it would be easier to

implement it in 2D.

Another possibility of the method is its generalization to

off-lattice structures. It is much easier to generate compact

conformations on lattices, because 2D or 3D lattices,

especially square and cubic lattices, enable the formulation

of the transfer matrix method in a highly rigorous way, such

that all possible conformations can be enumerated and

generated. However, this method can also be generalized to

off-lattice models, although, completely rigorous definitions

of the model are not possible. The simplest off-lattice

models are those where the protein chain is densely packed

into a regular three (or two) dimensional shape. An

ellipsoidal model of dense protein packing provides a

good starting point for the development of an off-lattice

transfer matrix method. We can slice the ellipsoid into

several uniformly spaced pieces of equal width by using

several parallel equidistant planes in the same way an egg is

cut uniformly by a slicing machine (Fig.13).

We may consider all conformations generated within the

ellipsoidal shape and determine all possible connectivity

states for a given slice (cross-section of ellipsoid). For the

ellipsoid of revolution, the cross-section is a circle whose

radius changes from R ¼ 0 at two ends of the ellipsoid to

R ¼ Rmax in the center of the ellipsoid. The connectivity

state for a given cross-section illustrates how all pieces of a

chain coming from the left side of the slicing plane enter the

cross-section and reveals the topological connectivity of

these points. This is a direct generalization of the

connectivity states from the lattice models. Similarly to

the lattice model, we can define a distribution of bonds

within a given slice of the ellipsoid that when combined

with the connectivity states at the given cross-section

produces the connectivity state at the subsequent cross-

section. This piece-wise approach to protein configurations

(instead of the traditional picture of the protein as a linear

chain) formulated in terms of connectivities may permit

larger calculations of conformations that can shed a

completely new light on protein structures.

Fig. 12. The statistical average kNhl; as a function of s for the energy parameters corresponding to the simplest HP model (dashed line) and for corresponding to

the Li, Helling, Tang and Wingreen model [33] (solid line).

Fig. 13. An ellipsoid constricting the size of the generated protein chains.

Cross-sections of the ellipsoid provide parallel planes to be used for the off-

lattice transfer method.
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